Основы теории сварки

Основные процессы, протекающие при дуговой сварке.

Рассмотрим металлургические процессы, которые имеют общий характер во всех или большинстве случаев выполнения дуговой сварки.

Диссоциация газов и соединений. При диссоциации происходит распад более сложных компонентов на атомы или составные части. Этому процессу способствуют наличие высоких температур в зоне сварки и каталитическое действие расплавленного металла. При дуговой сварке в первую очередь диссоциации подвергаются молекулы газов как простых (кислород, азот, водород), так и сложных (углекислый газ СО₂, пары воды Н₂О и др). Диссоциация газов происходит по реакциям:

О₂ ⇆ О + О
N₂ ⇆ N + N
H₂ ⇆ H + H
CO₂ ⇆ CО + О

Кислород и водород при температурах дуги практически полностью диссоциируют на атомы, азот диссоциирует в меньшей степени.

Диссоциация водяного пара в зависимости от температуры проходит по реакциям:

H₂O ⇆ H₂ + O
H₂O ⇆ OH + H

Следовательно, в зависимости от условий протекания реакций водяной пар может окислять или восстанавливать металл сварочной ванны.

Диссоциации подвергаются и более сложные соединения. Во многих электродных покрытиях и флюсах содержится плавиковый шпат CaF₂. При высоких температурах он разлагается по реакции

CaF₂ → CaF + F

Атомы фтора, соединяясь с электронами, превращаются в ионы малой подвижности. Это ведет к снижению проводимости дугового промежутка и ухудшению стабильности дуги. Но в то же время атомы фтора способны связывать водород в молекулы HF, не растворяющиеся в металле ванны, уменьшая насыщение металла шва водородом. В состав многих покрытий электродов входят карбонаты, например СаСО₃. Разлагаясь при высоких температурах, они выделяют углекислый газ, который, в свою очередь, диссоциирует с образованием кислорода:

CaCO₃ ⇆ CaO + CO₂
CO₂ → CO + O

Находясь в атомарном состоянии, газы становятся химически активными и, реагируя с металлом, резко ухудшают его качество.

Окисление металла при сварке. Металл сварочной ванны может окисляться за счет кислорода, содержащегося в газовой среде и шлаках в зоне сварки. Кроме того, окисление может происходить и за счет оксидов (окалины, ржавчины), находящихся на кромках деталей и поверхности электродной проволоки. При нагреве имеющаяся в ржавчине влага испаряется, молекулы воды диссоциируют, а получающийся кислород окисляет металл. Окалина при плавлении металла превращается в оксид железа также с выделением свободного кислорода. При недостаточной защите сварочной ванны окисление происходит за счет кислорода воздуха.

Кислород с железом образует оксиды: FeO (22,3 % О₂), Fe₃0₄  (27,6 % О₂), Fe₂О₃ (30,1% О₂). При высокой температуре сварочной дуги за счет атомарного кислорода в результате реакции Fe+О→FeO образуется низший оксид, который при понижении температуры может переходить в другие формы высших оксидов.

Наибольшую опасность для качества шва представляет оксид FeO, способный растворяться в жидком металле. Этот оксид обладает температурой плавления меньшей, чем у основного металла. Поэтому при кристаллизации металла шва он затвердевает в последнюю очередь. В результате он располагается в виде прослоек по границам зерен, что вызывает снижение пластических свойств металла шва. Чем больше кислорода в шве находится в виде FeO, тем сильнее ухудшаются его механические свойства. Высшие оксиды железа не растворяются в жидком металле и, если они не успевают всплывать на поверхность сварочной ванны, остаются в металле шва в виде шлаковых включений.

Железо может окисляться также за счет кислорода, содержащегося в СО2 и парах воды Н2О:

Fe + CO₂ ⇆ FeO + CO
Fe + H₂O ⇆ FeO + H₂

В процессе сварки, кроме железа, окисляются и другие элементы, находящиеся в стали, – углерод, кремний, марганец. При переходе капель электродного металла в дуге окисление элементов происходит в результате взаимодействия их с атомарным кислородом газовой среды дугового промежутка: 

С + О → СО, 

Мn + О → МnО,  

Si + 2О → SiО₂.

В сварочной ванне элементы окисляются при взаимодействии их с оксидом железа

C + FeO ⇆ CO + Fe, 

Mn + FeO ⇆ MnO + Fe, 

Si + 2FeO ⇆ SiO₂ + 2Fe. 

Окисление этих элементов приводит к уменьшению их содержания в металле шва. Кроме того, образующиеся оксиды могут оставаться в шве в виде различных включений, значительно снижающих механические свойства сварных соединений, особенно пластичность и ударную вязкость металла шва. Повышенное содержание кислорода вредно влияет и на другие свойства – уменьшает стойкость против коррозии, повышает склонность к старению металла, сообщает ему хладноломкость и красноломкость. Поэтому одним из условий получения качественного металла шва является предупреждение окисления его в первую очередь путем создания различных защитных сред.

Раскисление металла при сварке. Применяемые при сварке защитные меры не всегда обеспечивают отсутствие окисления расплавленного металла. Поэтому его требуется раскислить. Раскислением называют процесс восстановления железа из его оксида и перевод кислорода в форму нерастворимых соединений с последующим удалением их в шлак. Окисление и раскисление, в сущности, представляют два направления протекания одного и того же химического процесса. В общем случае реакция раскисления имеет вид FeO + Me ⇆ Fe + МеО, где Me – раскислитель. 

Раскислителем является элемент, обладающий в условиях сварки большим сродством к кислороду, чем железо. В качестве раскислителей применяют кремний, марганец, титан, алюминий, углерод. Раскислители вводят в сварочную ванну через электродную проволоку, покрытия электродов и флюсы. Ниже приведены наиболее типичные реакции раскисления.

Раскисление марганцем: Fe + Mn ⇆ Fe + MnO.

Оксид марганца малорастворим в железе, но сам хорошо растворяет оксид железа FeO, увлекая его за собой в шлак.

Раскисление кремнием: 2FeO + Si ⇆ 2Fe+SiО₂.

Оксид кремния плохо растворим в железе и всплывает в шлак. Раскисление кремнием сопровождается реакциями образования более легкоплавких комплексных силикатов марганца, кремния и железа, которые лучше переходят в шлак:

MnO + SiO₂ = MnO   SiO₂
FeO + SiO₂ = FeO      SiO₂

Раскисление титаном: 2FeO + Ti = 2Fe + TiO₂.

Титан – энергичный раскислитель, при этом образуются легкоплавкие титанаты марганца и железа:

MnO + TiO₂ = Mn   TiO₂
FeО + TiO₂ = FeO   TiO₂

Марганец, кремний и титан вводят в сварочную ванну через электродную проволоку, легируя ее через покрытие электрода или флюс, вводя соответствующие ферросплавы.

Раскисление углеродом: FeO + С = Fe + СО.

Образующийся оксид углерода выделяется в атмосферу в газообразном состоянии, вызывая сильное кипение сварочной ванны и образуя поры в шве. Для получения плотных швов реакцию раскисления углеродом следует «подавить» введением в сварочную ванну других раскислителей, например кремния.

Легирование металла шва. Осуществляется различными полезными примесями для улучшения качества металла шва, путем введения полезных элементов в электродные стержни или проволоку, а также в состав электродного покрытия. Такие элементы, как кобальт, никель и др., полностью усваиваются наплавленным металлом. Элементы Mn и Si, участвующие в раскислении, при их достаточной концентрации в шлаке и электродном металле также частично усваиваются, переходя в сварной шов.

Взаимодействие с азотом. Азот воздуха, попадая в столб дуги, разогревается и частично диссоциирует. В атомарном состоянии азот растворяется в жидком металле. В процессе охлаждения азот выпадает из раствора и взаимодействует с металлом, образуя ряд соединений – нитридов Fe₂N, Fe₄N. Атомарный азот может соединяться и с кислородом, образуя оксид азота NO, который, растворяясь в каплях электродного металла, переходит в сварочную ванну. Содержание азота в металле шва вредно влияет на его механические свойства, особенно пластичность. Кроме того, насыщение металла азотом способствует образованию газовых пор. Снижение азота проводят для защиты расплавленного металла от воздуха или введения в него химических элементов, удаляющих азот в виде неметаллических включений.

Взаимодействие с водородом. Водород может попасть в зону сварки из влаги покрытия электрода или флюса, ржавчины на поверхности сварочной проволоки и детали, из воздуха. Атомарный водород хорошо растворяется в жидком металле, и с увеличением температуры нагрева растворимость увеличивается. Важной закономерностью в поведении газов является скачкообразное изменение их растворимости в металле при фазовых изменениях его и особенно при переходе из жидкого состояния в твердое.

При охлаждении и кристаллизации сварочной ванны выделяющийся водород не успевает полностью удаляться из металла шва. Это приводит к образованию в нем газовых пор. Кроме того, атомы водорода, диффундируя в имеющиеся полости и несплошности в затвердевающем металле, приводят к повышению в них давления, развитию в металле внутренних напряжений и образованию микротрещин. Снижение газонасыщения швов проводят за счет качественной защиты расплавленного металла при сварке очисткой и прокалкой свариваемого и сварочных материалов.

Реакции с серой и фосфором. Сера и фосфор являются вредными примесями в сталях. В сварочную ванну они попадают из основного металла, сварочной проволоки и иногда из покрытия электродов или флюса. В металле сера и фосфор могут находиться в виде соединений – сульфидов и фосфидов, хорошо растворимых в железе. Наличие в металле шва серы и фосфора снижает его механические свойства, сильно повышает склонность к образованию трещин и снижает ударную вязкость. Поэтому рафинирование, очистка металла от серы и фосфора имеет целью уменьшение общего содержания FeS и FeP

Рафинирование осуществляют путем связывания серы и фосфора в химические соединения, нерастворимые в стали и удаляемые в шлак, по реакциям:

FeS + Mn = MnS + Fe; 

FeS + СаО=FeO + CaS; 

2Fe₂P + 5FeO = P₂O₅+9Fe;

3СаО + Р₂0₅=Са₃Р₂О₈. 

При этом MnS, CaS и Са₃Р₂О₈ переходят в шлак. Следует контролировать состав применяемых для сварки материалов (металла, покрытия, флюса) и не допускать содержания в них серы и фосфора выше норм.

Похожие статьи

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Кнопка «Наверх»